

STATCOM (SVC)

from Zener Electric Sinesaver

The New Technology in Power Factor Correction

An Innovative Product,

Designed and Manufactured by

Zener Electric Pty Ltd

What is Power Factor

- A measure of inefficient use of power
- PF of 1 or unity power factor is the ideal
- The lower the Power Factor the more current required to supply the same True Power.
 - True power = consumed power

Poor Power Factor

- Larger conductors required
- Larger transformers
- Higher rated switchgear
- Fuses of a higher rating
- Higher voltage drops
- Extra copper losses
- Higher generating and capital costs
 - Infrastructure / upgrade costs

Why improve power factor

- Environmental Responsibility
 - 'Cleaner / Greener' production initaives
- Supply Infrastructure at limits
 - Penalties imposed to improve efficiency of current power generating plants.
- Reduce Plant operating costs
- Reduce energy costs

Explanation

AC wave form is sinusoidal

Waveforms are in Phase with each other

What is the cause

- Resistive loads
 - Unity Power Factor
 - Resistor Heater elements / lamps
- Inductive Loads
 - Current lags the voltage (90°)
 - Motors and fluoro's (ballasts)
- Capacitive Loads
 - Current Leads the voltage (90°)

How to overcome

- Static Correction
 - Attached to specific load

- Bulk / Group Correction
 - Conventional or Old Method
 - Active Type; The New Method !!

Static Correction

- Advantages
 - Inexpensive
 - Simple to install
 - Ideal for specific load
- Disadvantages
 - Control considerations
 - Fixed amount of correction

The Vector Diagram of a Motor

The Motor Current is the vector sum of the Work Current and the Magnetizing current

The Vector Diagram

of a Motor with PF capacitor

 The capacitor current cancels the inductive current (180°)

The Vector Diagram

of a Motor with PF capacitor

- The end result
 - Less Motor Current

Bulk - Conventional

- Advantages
 - System/site approach
 - Degree of automation
 - Ideal for sites with qty of inductive loads
- Disadvantages
 - More Investment required
 - High maintenance costs
 - Possible Harmonic Issues

The Vector Diagram for Power

Power Factor = $\cos \theta$ =

True Power
Apparent Power

The Vector Diagram

with Correction

- The end result is more efficient use of power & supply infrastructure
- Power consumed remains constant
- Savings on tariff penalties (if applicable)

Conventional PFC The Old Technology

- Consists of a control panel to switch in banks of capacitors
 - Uses Contactors
 - Pre-programmed stages
 - Capacitors are switched at pre-determined levels of power Factor
 - Delayed response to prevent continuous relay operation

STATCOM (SVC)

New Technology

- Advantages
 - Latest Technology
 - Linear correction
 - Can achieve unity Power Factor
 - Faster payback period
 - Capacity can be easily increased
 - Greater monitoring and control
- Disadvantages
 - investment required

A STATCOM (SVG) from Zener Sinesaver

- Replaces older technology
- New Technology in Power Correction
- Improved performance
 - Linear control
 - Unity Power Factor
 - Instantaneous correction
- Greater reliability with the use of power semiconductors

Advantages over conventional type

- Control
 - Instantaneous response to load changes
 - Vs. delayed reaction to PF changes & ignores fast changes such as motor starting
 - Linear Control of Power Factor & Precise Control of Power Factor
 - Vs. Stepped control of contactors to connect banks of capacitors.
 - Not effected by Harmonics
 - Vs. Harmonics result in expensive damage to capacitors

Advantages V's. conventional type

- Control Continued'
 - Uses latest technology in Power Electronics resulting in improved reliability and reduced maintenance costs.
 - V's. Use of high maintenance contactors to control continual switching of capacitor banks
 - Reduced Surge currents on the Supply
 - V's. Direct switching of capacitors on the supply results in current surges on the supply.
 - Not effected by voltage/frequency fluctuations
 - V's. The PF correction will vary with changes in voltage & Frequency.

Advantages

V's. conventional type

- Installation
 - One size only; 100Kvar unit only, add multiple units in parallel for >100kvar
 - V's. Multiple units with various amounts of capacitor banks as required.
- Setup
 - Set the desired Power Factor with a push of a button eg. 1.00
 - V's. Required to be factory Preset fro step control of capacitor Banks

Advantages

V's. conventional type

- Adaption to site changes
 - KVar correction is easily increased by adding an additional SineSaver unit.
 - V's. Substantial modifications and factory setup required, may require complete changeover unit.

The SineSaver Technical Specs

- Available in 100Kvar Units
- IP00 for retrofitOR
- Enclosed to IP43
 - Complete with :
 - Isolation Switches
 - Semiconductor Fuses
- Dimensions
 - IP00:
 - IP43:

How is it installed?

How does it work?

Technical Explanation

- V Inverter is slightly higher voltage than V Line
- Inductor Current is 90° to Inductor Voltage, happens to be in phase with V line
- The Result is a Power Factor of 1, ie. Unity

What are the savings?

- KWH Charge
 - This is the true power used/consumed this will generally remain constant
- Infrastructure / Capital expense
 - More efficient use of your infrastructure means greater capacity in what you have, reduce costs of upgrade work.
- PF Penalties
 - Reduce energy costs where penalties maybe incurred for poor power factor.
- Maximum Demand kVA
 - Reduce energy costs resulting from peak demands. This
 is measured in KVA, which is the apparent power

Payback Periods

- Determined by reduced energy costs
 - Can be estimated based on past electricity bills.
 - Accuracy depends on type of penalty
 - Maximum Demand or PF Penalty
- Reduction in capital expenditure
 - Infrastructure costs

Sinesave for STATCOM (SVC)

The New Technology
in

Power Factor Correction

For more information contact your nearest Zener Distributor or visit:

www.zener.com.au